[Help]Full Text[Boolean Search][Advanced][Number Search][Order Copy][PTDLs]

[Previous Patent] [Next Patent] [Back to List]
(6 of 54)

United States Patent 6,140,181
Forbes, et. al. Oct. 31, 2000

Memory using insulator traps


A memory cell provides point defect trap sites in an insulator for storing data charges. Single electrons are stored on respective point defect trap sites and a resulting parameter, such as transistor drain current, is detected. By adjusting the density of the point defect trap sites, more uniform step changes in drain current are obtained as single electrons are stored on or removed from respective trap sites. By also adjusting the trapping energy of the point defect trap sites, the memory cell provides either volatile data storage, similar to a dynamic random access memory (DRAM), or nonvolatile data storage, similar to an electrically erasable and programmable read only memory (EEPROM). The memory cell is used for storing binary or multi-state data.

Inventors: Forbes; Leonard (Corvallis, OR); Geusic; Joseph E. (Berkeley Heights, NJ).
Assignee: Micron Technology, Inc. (Boise, ID).
Appl. No.: 394,109
Filed: Sept. 10, 1999

Related U.S. Application Data
Division of Ser No. 969,099, Nov. 13, 1997.
Intl. Cl. : H01L 21/336
Current U.S. Cl.: 438/257; 257/314; 257/315; 257/321; 257/324; 438/197; 438/211; 438/264; 438/488
Field of Search: 438/299, 197, 144, 158, 167, 257, 211, 264, 488; 437/43; 257/321, 324; 365/185.9, 168, 185.03, 185.33

References Cited | [Referenced By]

U.S. Patent Documents
4,507,673Mar., 1985Aoyama et al. 357/23.R
4,939,559Jul., 1990DiMaria et al. 357/23.5
5,021,999Jun., 1991Kohda et al. 365/168
5,027,171Jun., 1991Reedy et al. 357/23.5
5,111,430May, 1992Morie 365/185
5,253,196Oct., 1993Shimabukuro 365/45
5,293,560Mar., 1994Harari 365/185
5,298,447Mar., 1994Hong 437/43
5,317,535May, 1994Talreja et al. 365/185
5,388,069Feb., 1995Kokubo 365/185
5,424,993Jun., 1995Lee et al. 365/218
5,430,670Jul., 1995Rosenthal 365/45
5,434,815Jul., 1995Smarandoiu et al. 365/189.01
5,438,544Aug., 1995Makino 365/185
5,449,941Sept., 1995Yamazaki et al. 257/411
5,467,306Nov., 1995Kaya et al. 365/185.2
5,477,485Dec., 1995Bergemont et al. 365/185.24
5,485,422Jan., 1996Bauer et al. 365/168
5,493,140Feb., 1996Iguchi 257/316
5,508,543Apr., 1996Hartstein et al. 257/314
5,627,781May, 1997Hayashi et al. 365/185.2
5,670,790Sept., 1997Katoh et al. 257/14
5,714,766Feb., 1998Chen et al. 257/20
5,740,104Apr., 1998Forbes 365/185.03
5,754,477May, 1998Forbes 365/185.33
5,959,896Sept., 1999Forbes 365/185.33

Foreign Patent Documents
3-222367Oct., 1991JP
6-224431Aug., 1994JP
6-302828Oct., 1994JP
8-255878Oct., 1996JP
Other References

Adler, E., et al., "The Evolution of IBM CMOS DRAM Technology", 167-188, (Jan./Mar., 1995).

Alok, D., et al., "Electrical Properties of Thermal Oxide Grown on N-type 6H-Silicon Carbide", Applied Physics Letters, 64, 2845-2846, (May 23, 1994).

Boeringer, D.W., et al., "Avalanche amplifications of multiple resonant tunneling through parallel silicon microcrystallites", Physical Rev. B, 51, 13337-13343, (1995).

DeKeersmaecker, R., et al., "Electron Trapping and Detrapping Characteristics of Arsenic-Implanted SiO(2) Layers", J. Appl. Phys., 51, 1085-1101, (Feb. 1980).

Demichelis, F., et al., "Influence of Doping on the Structural and Optoelectronic Properties of Amorphous and Microcrystalline Silicon Carbide", Journal of Applied Physics, 72, 1327-1333, (Aug. 15, 1992).

Demichelis, F., et al., "Physical Properties of Undoped and Doped Microcrystalline SiC:H Deposited By PECVD", Materials Research Society Symposium Proceedings, 219, Anaheim, CA, 413-418, (Apr. 30-May 3, 1991).

DiMaria, D., et al., "Capture and Emission of Electrons at 2.4-eV-Deep Trap Level in SiO(2) Films", Physical Review B, 11, 5023-5030, (Jun. 1975).

DiMaria, D., et al., "Enhanced Conduction and Minimized Charge Trapping in Electrically Alterable Read-Only Memories Using Off-Stoichiometric Silicon Dioxide Films", J. Appl. Phys., 55, 3000-3019, (Apr. 1984).

Dipert, B., et al., "Flash Memory Goes Mainstream", IEEE Spectrum, 30, 48-52, (1993).

Edelberg, E., et al., "Visible Luminescence from Nanocrystalline silicon films produced by plasma enhanced chemical vapor deposition", Appl. Phys. Lett., 68, 1415-1417, (1996).

Forbes, L., et al, "Field Induced Reemission of Electrons Trapped in SiO(2)", IEEE Trans. on Electron Devices, ED-26(11), 1816-1818, (Nov. 1979).

Forbes, L., et al., "Thermal Re-Emission of Trapped Hot Electrons in NMOS Transistors", IEEE Trans. on Electron Devices, 38, 2712, (Dec. 1991).

Hamakawa, Y., et al., "Optoelectronics and Photovoltaic Applications of Microcrystalline SiC", Materials Research Society Symposium Proceedings, 164, Boston, MA, 291-301, (Nov. 29-Dec. 1, 1989).

Hanafi, H., et al., "Fast and Long Retention-Time Nano-Crystal Memory", IEEE Trans. on Electron Devices, 43, 1553-1558, (Sep. 1996).

Hori, T., et al., "A MOSFET with Si-Implanted Gate-Sio(2) Insulator for Nonvolatile Memory Applications", Int'l Electron Devices Meeting: Technical Digest, San Fransisco, CA, 469-472, (Dec. 1992).

Hsu, C., et al., "Observation of Threshold Oxide Electric Field for Trap Generation in Oxide Films on Silicon", J. Appl. Phys., 63, 5882-5884, (Jun. 1988).

Hu, G., et al., "Will Flash Memory Replace Hard Disk Drive?", 1994 IEEE International Electron Device Meeting, Panel Discussion, Session 24, Outline, 1 p., (Dec. 13, 1994).

Huntley, D., et al., "Deep Traps in Quartz and Their Use for Optical Dating", Canadian J. Physicas, 74, 81-91, (Mar./Apr. 1996).

Hwang, N., et al., "Tunneling and Thermal Emission of Electrons at Room Temperature and Above from a Distribution of Deep Traps in SiO2", Proc. Int'l Elec. Devices and Materials Symp., Taiwan, 559-562, (Nov. 1992).

Hwang, N., et al., "Tunneling and Thermal Emission of Electrons from a Distribution of Deep Traps in SiO2", IEEE Trans on Electron Devices, 40(6), 1100-1103, (Jun. 1993).

Hybertsen, M.S., "Absorption and Emission of Light in Nanoscle Silicon Structures", Phys. Rev. Lett., 72, 1514-1517, (1994).

Jung, T.S., et al., "A 3.3V, 128Mb Multi-Level NAND Flash Memory for Mass Storage Applications", 1996 IEEE Solid-State Circuits Conf., Digest of Technical Papers, 512, (1996).

Kalnitsky, A., et al., "Memory Effect of Enhanced Conductivity in Si-Implanted Thermally Grown SiO(2)", IEEE Trans. on Electron Devices, ED-34, 2372, (Nov. 1987).

Kalnitsky, A., et al., "Rechargeable E Centers in Silicon-Implanted SiO(2) Films", J. Appl Phys., 67, 7359-7367, (Jun. 1990).

Kamata, T., et al., "Substrate Current Due to Impact Ionization in MOS-FET", Japan. J. Appl. Phys., 15, 1127-1134, (Jun. 1976).

Kato, M., et al., "Read-Disturb Degradation Mechanism due to Electron Trapping in the Tunnel Oxide for Low-voltage Flash Memories", IEEE Electron Device Meeting, 45-48, (1994).

Lee, M., et al., "Thermal Self-Limiting Effects in the Long-Term AC Stress on N-Channel LDD MOSFET's", Proc.: 9th Biennial University/Government/Industry Microelectronics Symp., Melbourne, FL, 93-97, (Jun., 1991).

Ohkawa, M., et al., "A 98 mm 3.3V 64Mb Flash Memory with FN-NOR type 4-Level Cell", IEEE International Solid-State Circuits Conference, 36-37, (1996).

Prendergast, J., "Flash or DRAM: Memory Choice for the Future", IEEE Electron Device Meeting, Session 25, Phoenix, AZ, (1995).

Schoenfeld, O., et al., "Formation of Si Quantum dots in Nanocrystalline silicon", Proc. 7th Int. Conf. on Modulated Semiconductor Structures, Madrid, 605-608, (1995).

Shimabukuro, R.L., et al., "Circuitry for Artificial Neural Networks with Non-volatile Analog Memories", IEEE Int'l Symp. on Circuits and Systems, 2, 1217-1220, (1989).

Shimabukuro, R.L., et al., "Dual-Polarity Nonvolatile MOS Analogue Memory (MAM) Cell for Neural-Type Circuitry", Electronics Lett., 24, 1231-1232, (Sep. 15, 1988).

Suh, K.D., et al., "A 3.3 V 32 Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme", IEEE J. Solid-State Circuits, 30, 1149-1156, (Nov. 1995).

Takeuchi, K., et al., "A Double-Level-V Select Gate Array Architecture for Multilevel NANAD Flash Memories", IEEE Journal of Solid-State Circuits, 31, 602-609, (Apr. 1996).

Thomas, J., et al., "Electron Trapping Levels in Silicon Dioxide Thermally Grown in Silicon", J. Physics and Chemistry of Solids, 33, 2197-2216, (1972.

Thompson, S., et al., "Positive Charge Generation in SiO(2) by Electron-Impact Emission of Trapped Electrons", J. Appl. Phys., 72, 4683-4695, (Nov. 1992).

Thompson, S., et al., "Tunneling and Thermal Emission of Electrons from a Distribution of Shallow Traps in SiO(2)", Appl. Phys. Lett., 58, 1262-1264, (Mar. 1991).

Tiwari, S., et al., "A silicon nanocrystal based memory", Appl. Physics Lett., 68, 1377-1379, (1996).

Tiwari, S., et al., "Volatile and Non-Volatile Memories in Silicon with Nano-Crystal Storage", Int'l Electron Devices Meeting: Technical Digest, Washington, DC, 521-524, (Dec. 1995).

Tsu, R., et al., "Slow Conductance oscillations in nanoscale silicon clusters of quantum dots", Appl. Phys. Lett., 65, 842-844, (1994).

Tsu, R., et al., "Tunneling in Nanoscale Silicon Particles Embedded in an SiO/sub/2 Matrix", Abstract, IEEE Device Research Conference, 178-179, (1996).

Vuillaume, D., et al., "Charging and Discharging Properties of Electron Traps Created by Hot-Carrier Injections in Gate Oxide of N-Channel Metal Oxide Semiconductor Field Effect Transistor", J. Appl. Phys., 73, 2559-2563, (Mar. 1993).

Ye, Q., et al., "Resonant Tunneling via Microcrystalline-silicon quantum confinement", Physical Rev. B, 44, 1806-1811, (1991).

Yih, C.M., et al., "A Consistent Gate and Substrate Current Model for Sub-Micron MOSFET'S by Considering Energy Transport", Int'l Symp.. on VLSI Tech., Systems and Applic., Taiwan, 127-130, (1995).

Young, D., et al., "Characterization of Electron Traps in Aluminum-Implanted SiO(2)", IBM J. Research and Development, 22, 285-288, (May 1978).

Zhao, X., et al., "Nanocrystalline Si: a material constructed by Si quantum dots", 1st Int. Conf. on Low Dimensional Structures and Devices, Singapore, 467-471, (1995).

S. Wolf, Silicon Processing For The VLSI ERA, vol. 1, p. 227, vol. 2, p. 319, 1990.

Wolf, S., "Ion Implantation for VLSI", Silicon Processing for the VLSI Era, vol. 1, 280, (1990).

Primary Examiner: Smith; Matthew
Assistant Examiner: Keshaven; B.V.
Attorney, Agent or Firm: Schwegman, Lundberg, Woessner & Kluth, P.A.
21 Claims, 5 Drawing Figures

[Previous Patent] [Next Patent] [Back to List]
(6 of 54)